Numerical Methods for Computing Nonlinear Eigenpairs: Part II. Non-Iso-Homogeneous Cases

نویسندگان

  • Xudong Yao
  • Jianxin Zhou
چکیده

Standing (solitary)-wave/steady-state solutions in many nonlinear wave motions and Schrodinger flows lead to nonlinear eigenproblems. In [X. Yao and J. Zhou, SIAM J. Sci. Comput., 29 (2007), pp. 1355-1374], a Rayleigh-local minimax method is developed to solve iso-homogeneous eigenproblems. In this subsequent paper, a unified method in Banach spaces is developed for solving non iso-homogeneous even non homogeneous eigenproblems and applied to solve two models: the Gross-Pitaevskii problem in the Bose-Einstein condensate and the p-Laplacian problem in nonNewtonian flows/materials. First a new active Lagrange functional is formulated to establish a local minimax characterization. A local minimax method is then devised and implemented to solve the model problems. Numerical results are presented. Convergence results of the algorithm and an order of eigensolutions computed by the algorithm are also established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Methods for Computing Nonlinear Eigenpairs: Part I. Iso-Homogeneous Cases

With a Rayleigh quotient formulation, a local minimax method is developed to solve a class of (iso-homogeneous) nonlinear eigenpair problems for multiple solutions in Banach spaces following their instability order. The algorithm is implemented to compute (weighted) eigenpairs of the p-Laplacian. Numerical eigenfunctions are illustrated by their graphics. Several interesting phenomena have been...

متن کامل

An improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations

In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...

متن کامل

Comparing inclusion techniques on chemical engineering problems

Solving general nonlinear systems of equations and/or finding the global optimum of nonconvex functions constitute an important part of the everyday practice in chemical engineering. Standard methods cannot provide theoretical guarantee for convergence to a solution, cannot find multiple solutions, and cannot prove non-existence of solutions. This is the main motive to apply interval methods. I...

متن کامل

Selection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media

The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water.  So, the averaging method applied to compute hydraul...

متن کامل

Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems: II. Accelerated algorithms

The computation of a defective eigenpair of nonlinear algebraic eigenproblems of the form T (λ)v = 0 is challenging due to its ill-posedness and the linear convergence of classical single-vector Newton-like methods. In this paper, we propose and study new accelerated Newton-like methods for defective eigenvalues which exhibit quadratic local convergence at the cost of solving two linear systems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008